HadoopDB: An architectural hybrid of MapReduce and DBMS technologies

Azza Abouzeid, Kamil Bajda-Pawlikowski
Daniel J. Abadi, Avi Silberschatz

Yale University
http://db.cs.yale.edu/hadoopdb/hadoopdb.html

October 5, 2009

Major Trends

1. Data explosion:
 - eBay has a 6.5 PB warehouse, Yahoo! Everest has 10 PB.

2. Analysis over raw data
Major Trends

1. Data explosion:
 - eBay has a 6.5 PB warehouse, Yahoo! Everest has 10 PB.

2. Analysis over raw data

Bottom line
Analyzing massive structured data on 1000s of shared-nothing nodes.
Sales Record Example

Consider a large data set of sales log records, each consisting of sales information including:

1. a date of sale
2. a price

We would like to take the log records and generate a report showing the total sales for each year.

Question:

How do we generate this report efficiently and cheaply over massive data contained in a shared-nothing cluster of 1000s of machines?
MapReduce (Hadoop)

MapReduce is a programming model which specifies:

- A **map** function that processes a key/value pair to generate a set of intermediate key/value pairs,
- A **reduce** function that merges all intermediate values associated with the same intermediate key.

Hadoop

- is a MapReduce implementation for processing large data sets over 1000s of nodes.
- Maps (and Reduces) run independently of each other over blocks of data distributed across a cluster.
Sales Record Example using Hadoop

Query: Calculate total sales for each year.

We write a MapReduce program:

- **Map**: Takes log records and extracts a key-value pair of year and sale price in dollars. Outputs the key-value pairs.

- **Shuffle**: *Hadoop automatically partitions the key-value pairs by year to the nodes executing the Reduce function*

- **Reduce**: Simply sums up all the dollar values for a year.
Relational Databases

Suppose that the data is stored in a relational database system, the sales record example could be expressed in SQL as:

$$\text{SELECT \, \text{YEAR(date) \, AS \, year, \, SUM(price) } }$$
FROM sales
GROUP BY \text{year}

The execution plan is:

$\text{projection}_{(year, price)} \rightarrow \text{hash aggregation}_{(year, price)}$

Question:

How do we process this efficiently if the data is very large?
Parallel Databases

Parallel Databases are like single-node databases except:
- Data is partitioned across nodes
- Individual relational operations can be executed in parallel

```
SELECT YEAR(date) AS year, SUM(price)
FROM sales GROUP BY year
```

Execution plan for the query:

- `projection_{year,price} → partial hash aggregation_{year,price} → partitioning_{year} → final aggregation_{year,price}`

Note that the execution plan resembles the map and reduce phases of Hadoop.
Differences between Parallel Databases and Hadoop

<table>
<thead>
<tr>
<th></th>
<th>Parallel Database</th>
<th>MapReduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Designed for structured, relational data</td>
<td>Designed for unstructured data</td>
</tr>
<tr>
<td>Query Interface</td>
<td>SQL</td>
<td>MapReduce programs written in a variety of languages (some SQL support)</td>
</tr>
<tr>
<td>Query Execution</td>
<td>Pipelines results between operators</td>
<td>Materializes results between Map and Reduce phases</td>
</tr>
<tr>
<td>Job Granularity</td>
<td>Entire query</td>
<td>Determined by data storage block size (Runtime scheduler)</td>
</tr>
</tbody>
</table>

Yale University, CLuE PI Meeting 2009
Differences between Parallel Databases and Hadoop

<table>
<thead>
<tr>
<th></th>
<th>Parallel Database</th>
<th>MapReduce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Designed for structured, relational schema</td>
<td>Designed for unstructured data</td>
</tr>
<tr>
<td>Query Interface</td>
<td>SQL</td>
<td>MapReduce programs written in a variety of languages. (some SQL support)</td>
</tr>
<tr>
<td>Query Execution</td>
<td>Pipelines results between operators</td>
<td>Materializes results between Map and Reduce phases</td>
</tr>
<tr>
<td>Job Granularity</td>
<td>Entire query</td>
<td>Determined by data storage block size (Runtime scheduler)</td>
</tr>
</tbody>
</table>

Introduction

Differences between Parallel Databases and Hadoop

- **Data**: Parallel databases are designed for structured, relational data, while Hadoop is designed for unstructured data.
- **Query Interface**: SQL is used for parallel databases, while MapReduce programs are written in a variety of languages, with some SQL support.
- **Query Execution**: Parallel databases pipeline results between operators, while Hadoop materializes results between Map and Reduce phases.
- **Job Granularity**: The entire query is executed in parallel databases, whereas Hadoop's job granularity is determined by data storage block size (runtime scheduler).
To summarize

<table>
<thead>
<tr>
<th></th>
<th>Scalability*</th>
<th>High Performance**</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapReduce</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Parallel</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Databases</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

* 1000s of nodes
** Queries on structured data
At Yale, we looked beyond the differences ...
At Yale, we looked beyond the differences ...
and we discovered ...

... that they complete each other

http://i214.photobucket.com/albums/cc19/brittanybutton/elephants.jpg

Basic design idea

Multiple, independent, single node databases coordinated by Hadoop.
Hadoop Basics
Introduction Candidates Differences HadoopDB Evaluation
Background Architecture SMS

Architecture
SQL-MR-SQL

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);
Evaluating HadoopDB

Compare HadoopDB to

1. Hadoop
2. Parallel databases (Vertica, DBMS-X)

Features:

1. Performance:
 - We expected HadoopDB to approach the performance of parallel databases

2. Scalability:
 - We expected HadoopDB to scale as well as Hadoop

We ran the Pavlo et al. SIGMOD’09 benchmark on Amazon EC2 clusters of 10, 50, 100 nodes.
Load

Random Unstructured Data (535MB/node)

- **Vertica**
- **HadoopDB**
- **Hadoop**

Structured Data (20GB/node)

- **Vertica**
- **HadoopDB**
- **Hadoop**

Yale University, CLuE PI Meeting 2009
Performance: Grep Task

1. Full table scan, highly selective filter
2. Random data, no room for indexing
3. Hadoop overhead outweighs query processing time in single-node databases

```
SELECT * FROM grep WHERE field LIKE '%xyz%';
```
Performance: Join Task

- No full table scan due to clustered indexing
- Hash partitioning and efficient join algorithm

```sql
SELECT sourceIP, AVG(pageRank), SUM(adRevenue)
FROM rankings, uservisits
WHERE pageURL=destURL
AND visitDate BETWEEN 2000-1-15 AND 2000-1-22
GROUP BY sourceIP
ORDER BY SUM(adRevenue) DESC LIMIT 1;
```
Performance: Bottom Line

1. Unstructured data
 - HadoopDB’s performance matches Hadoop

2. Structured data
 - HadoopDB’s performance is close to parallel databases
Scalability: Setup

1. Simple aggregation task - full table scan
2. Data replicated across 10 nodes
3. Fault-tolerance: Kill a node halfway
4. Fluctuation-tolerance: Slow down a node for the entire experiment
Scalability: Results

1. HadoopDB and Hadoop take advantage of runtime scheduling by splitting data into chunks or blocks.

2. Parallel databases restart entire query on node failure or wait for the slowest node.
To summarize

HadoopDB ...

1. is a hybrid of DBMS and MapReduce
2. scales better than commercial parallel databases
3. is as fault-tolerant as Hadoop
4. approaches the performance of parallel databases
5. is free and open-source

http://hadoopdb.sourceforge.net
Future work

Engineering work:

1. Full SQL support in SMS
2. Data compression
3. Integration with other open source databases
4. Full automation of the loading and replication process
5. Out-of-the-box deployment
6. We’re hiring!

Research work:

- Incremental loading and on-the-fly repartitioning
- Dynamically adjusting fault-tolerance levels based on failure rate
Thank You ...

We welcome all thoughts on how to raise HadoopDB ...

http://www.jpbutler.com/thailand/images/elephant-8-days-old.jpg